Abstract

The morula-to-blastocyst transition (MBT) culminates with formation of inner cell mass (ICM) and trophectoderm (TE) lineages. Recent studies identified signaling pathways driving lineage specification, but some features of these pathways display significant species divergence. To better understand evolutionary conservation of the MBT, we completed a meta-analysis of RNA sequencing data from five model species and ICMTE differences from four species. Although many genes change in expression during the MBT within any given species, the number of shared differentially expressed genes (DEGs) is comparatively small, and the number of shared ICMTE DEGs is even smaller. DEGs related to known lineage determining pathways (e.g., POU5F1) are seen, but the most prominent pathways and functions associated with shared DEGs or shared across individual species DEG lists impact basic physiological and metabolic activities, such as TCA cycle, unfolded protein response, oxidative phosphorylation, sirtuin signaling, mitotic roles of polo-like kinases, NRF2-mediated oxidative stress, estrogen receptor signaling, apoptosis, necrosis, lipid and fatty acid metabolism, cholesterol biosynthesis, endocytosis, AMPK signaling, homeostasis, transcription, and cell death. We also observed prominent differences in transcriptome regulation between ungulates and nonungulates, particularly for ICM- and TE-enhanced mRNAs. These results extend our understanding of shared mechanisms of the MBT and formation of the ICM and TE and should better inform the selection of model species for particular applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.