Abstract
More than one hundred loci have been identified from human genome-wide association studies (GWAS) for blood lipids. Despite the success of GWAS in identifying loci, subsequent prioritization of causal genes related to these loci remains a challenge. To address this challenge, recent work suggests that candidate causal genes within loci can be prioritized through cross-species integration using genome-wide data from the mouse. Mouse model systems provide unparalleled access to primary tissues, like the liver, that are not readily available for human studies. Given the key role the liver plays in controlling blood lipid levels and the wealth of liver genome-wide transcript and protein data available in the mouse, these data can be leveraged. Using coexpression network analysis approaches with mouse genome-wide data, coupled with cross-species analysis of human lipid GWAS, causal genes within lipid loci can be prioritized. Prioritization through both mouse and human along with biochemical validation provide a systematic and valuable method to discover lipid metabolism genes. The prioritization of causal lipid genes within GWAS loci is a challenging process requiring a multidisciplinary approach. Integration of data types across species, such as the mouse, can aid in causal gene prioritization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.