Abstract
Traffic classification (TC) has a principal function in autonomous network management. Recently, deep learning and machine learning-based TC have become popular than the traditional port-based and protocol-based TC due to practices such as port disguise and payload encryption. The flow-based TC is reliable as it relies on time-related statistical features. Federated learning is a distributed machine learning technique to train improvised deep/machine learning models with less privacy distress. The organizations or enterprises having similar business models may take participation in building a federated model for their network traffic characterization. In this study, we build a cross-silo horizontal federated model for TC using flow-based time-related features. The federated model shows comparable performance to the centralized model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.