Abstract

The present study examined cross-sectional and longitudinal relationships between total and segmental subcutaneous tissue thicknesses from ultrasonography (US) and total and segmental fat mass (FM) estimates from dual-energy X-ray absorptiometry (DXA). Traditional US FM estimates were also examined. Twenty resistance-trained males (mean±SD; age: 22.0±2.6years; body mass: 74.8±11.5kg; DXA fat: 17.5±4.5%) completed a 6-week supervised resistance training programme while consuming a hypercaloric diet. Pre- and post-intervention body composition was assessed by DXA and B-mode US. Data were analysed using Pearson's correlation (r), Lin's correlation coefficient (CCC), paired t-tests, Wilcoxon signed-rank tests and Bland-Altman analysis, as appropriate. Cross-sectionally, correlations were observed between total DXA FM and total subcutaneous tissue thickness (r=0.88). Longitudinally, a correlation was observed between total DXA FM changes and total subcutaneous tissue changes (r=0.49, CCC=0.38). Correlations of similar magnitudes were observed for the upper body and trunk estimates, but DXA FM changes were unrelated to subcutaneous tissue changes for the lower body and arms. Cross-sectionally, US 2-compartment FM and DXA FM were correlated (r=0.91, CCC=0.83). Longitudinally, a weaker correlation was observed (r=0.47, CCC=0.33). In summary, longitudinal associations between US and DXA are weaker than cross-sectional relationships; additionally, correlations between US subcutaneous tissue and whole-body DXA FM appear to be driven by the trunk region rather than appendages. Reporting raw skinfold thicknesses rather than FM estimates alone may improve the utility of techniques based on subcutaneous tissue thickness, such as US and skinfolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.