Abstract

Multi-scale plasma turbulence including electron and ion temperature gradient (ETG/ITG) modes has been investigated by means of electromagnetic gyrokinetic simulations. Triad transfer analyses on nonlinear mode coupling reveal cross-scale interactions between electron and ion scales. One of the interactions is suppression of electron-scale turbulence by ion-scale turbulence, where ITG-driven short-wavelength eddies act like shear flows and suppress ETG turbulence. Another cross-scale interaction is enhancement of ion-scale turbulence in the presence of electron-scale turbulence. This is caused via short-wavelength zonal flows, which are created by the response of passing kinetic electrons in ITG, suppress ITG by their shearing, and are damped by ETG turbulence. In both cases, sub-ion-scale structures between electron and ion scales play important roles in the cross-scale interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call