Abstract

Accurate crop classification is of vital importance for agricultural water management. Most researchers have achieved crop classification by model optimization in the same temporal and regional domain by adjusting the value of input features. This study aims to improve the accuracy of crop classification across temporal and spatial domains. Sentinel-2 satellite imagery is employed for crop classification training and prediction in selected farming areas of Heilongjiang Province by calculating vegetation indices and constructing sequential input feature datasets. The HUNTS filtering method was used to mitigate the influence of cloud cover, which increased the stability and completeness of the input feature data across different years. To address the issue of shifts in the input feature values during cross-scale classification, this study proposes the hypothesis testing distribution method (HTDM). This method balances the distribution of input feature values in the test set even without knowing the crop distribution, thereby enhancing the accuracy of the classification test set. The results indicate that the HTDM significantly improves prediction accuracy in cases of substantial image quality variance. In 2022, the recognition accuracy for crop types at all farms processed by the HTDM was above 87%, showcasing the strong robustness of the HTDM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.