Abstract

It has been hypothesized that misfolding and misassembly of proteins into various aggregation states contribute to several neurodegenerative diseases. For instance, amyloid beta (Aβ) aggregation is considered a major factor in Alzheimer's disease pathogenesis. Herein, a fluorescent sensor array for detecting Aβ aggregates was fabricated using two probe pairs of conjugated polyelectrolytes and organic dye molecules, PPE1-Thioflavin T (ThT) and PPESO3-Nile Red (NR). Pattern recognition was achieved by linear discriminant analysis and hierarchical clustering analysis algorithms. As a result of distinguishing among monomers and three pure aggregate species, namely oligomers, protofibrils, and fibrils, the cross-reactive sensor array was also able to monitor aggregation kinetics in various aggregate forms and distinguish between on- and off- aggregate pathways. Our study provides a convenient approach for simultaneous detection of Aβ aggregates in mixtures, which may also be applied to the analysis of other disease-related proteins that are prone to aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call