Abstract
Published data on the mechanical strength and elasticity of lung tissue is widely variable, primarily due to differences in how testing was conducted across individual studies. This makes it extremely difficult to find a benchmark modulus of lung tissue when designing synthetic extracellular matrices (ECMs). To address this issue, we tested tissues from various areas of the lung using multiple characterization techniques, including micro-indentation, small amplitude oscillatory shear (SAOS), uniaxial tension, and cavitation rheology. We report the sample preparation required and data obtainable across these unique but complimentary methods to quantify the modulus of lung tissue. We highlight cavitation rheology as a new method, which can measure the modulus of intact tissue with precise spatial control, and reports a modulus on the length scale of typical tissue heterogeneities. Shear rheology, uniaxial, and indentation testing require heavy sample manipulation and destruction; however, cavitation rheology can be performed in situ across nearly all areas of the lung with minimal preparation. The Young’s modulus of bulk lung tissue using micro-indentation (1.4±0.4 kPa), SAOS (3.3±0.5 kPa), uniaxial testing (3.4±0.4 kPa), and cavitation rheology (6.1±1.6 kPa) were within the same order of magnitude, with higher values consistently reported from cavitation, likely due to our ability to keep the tissue intact. Although cavitation rheology does not capture the non-linear strains revealed by uniaxial testing and SAOS, it provides an opportunity to measure mechanical characteristics of lung tissue on a microscale level on intact tissues. Overall, our study demonstrates that each technique has independent benefits, and each technique revealed unique mechanical features of lung tissue that can contribute to a deeper understanding of lung tissue mechanics.
Highlights
Lung tissue is highly elastic and mechanically robust over hundreds of millions of respiratory cycles
We describe the application of cavitation rheology to lung tissue, and we attempt to unify tissue modulus measurements by comparing cavitation rheology to other traditional tissue mechanics approaches [15]
It has been suggested that freezing the lung tissue using LN2, at -80 ̊C, or using optimal cutting temperature (OCT) medium to freeze samples would not significantly impact these mechanical properties (Fig 2)
Summary
Lung tissue is highly elastic and mechanically robust over hundreds of millions of respiratory cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.