Abstract

The cross-plane thermal conductivity of a molybdenum disulphide (MoS2) film is calculated from the nonequilibrium molecular dynamics simulation. The results show that, unlike graphite which has a slow convergent speed, the thermal conductivity of MoS2 tends to a convergent value when the film thickness is beyond about 40 nm. We also construct the cross-plane thermal conductivity of bulk MoS2 as an accumulation function of the phonon mean free path (MFP). It is found that phonons with MFPs below 40 nm contribute ~90% of the MoS2 cross-plane thermal conductivity at room temperature. This critical size of the phonon MFP is about two orders of magnitude smaller than that of graphite. Further calculations show that the shorter cross-plane phonon MFPs in bulk MoS2 may result from the lower phonon cut-off frequency and the mismatch of phonon density of state between Mo and S due to the mass difference. The phonon transport properties obtained would be helpful in the design and optimization of MoS2-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.