Abstract

Accurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes. Most meiotic recombination intermediates that give rise to interhomolog crossovers are embedded within a hallmark chromosomal structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known structural components of the budding yeast SC, the Zip1 protein is unique for its independent role in promoting crossover recombination; Zip1 is specifically required for the large subset of crossovers that also rely on the meiosis-specific MutSγ complex. Here we report that adjacent regions within Zip1’s N terminus encompass its crossover and synapsis functions. We previously showed that deletion of Zip1 residues 21–163 abolishes tripartite SC assembly and prevents robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSγ crossover recombination. We find the reciprocal phenotype when Zip1 residues 2–9 or 10–14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSγ crossovers are strongly diminished. Interestingly, Zip1 residues 2–9 or 2–14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSγ crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15–20 does not detectably prevent Zip3’s localization at Zip1 polycomplex and supports some MutSγ crossing over but prevents normal SC assembly and Ecm11 SUMOylation. Our results highlight distinct N terminal regions that are differentially critical for Zip1’s roles in crossing over and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors within close proximity of one another.

Highlights

  • A unique feature of the meiotic cell cycle is how chromosomes are segregated at the first division: Homologous chromosomes orient and precisely separate from one another on the meiosis I spindle due to the prior establishment of recombination-based associations between homologs

  • At the crux of meiotic chromosome segregation is a transient association between homologous chromosomes established by a crossover recombination event

  • Our structure-function analysis of the yeast synaptonemal complex (SC) transverse filament protein, Zip1, reveals pro-crossover and pro-synapsis functions that are encompassed by adjacent N terminal regions

Read more

Summary

Introduction

A unique feature of the meiotic cell cycle is how chromosomes are segregated at the first division: Homologous chromosomes (homologs) orient and precisely separate from one another on the meiosis I spindle due to the prior establishment of recombination-based associations between homologs. The repair pathway that allows a subset of Spo11-mediated DSBs to become interhomolog crossovers involves the formation and processing of Holliday junction intermediates by meiosis-specific proteins [3, 4]. This set of crossover-promoting proteins includes the MutSγ (Msh4-Msh5) and MutLγ(Mlh1-Mlh3) heterodimeric complexes which have homology to the bacterial MutS and MutL protein families, respectively [5,6,7,8,9,10]. DSB repair processes in meiotic cells rely on meiosis-specific proteins and pathways to ensure desired outcomes unique to meiosis: for example that crossovers preferentially involve non-sister chromatids of homologous chromosomes (as opposed to involving the sister chromatids that comprise a single chromosome), and that every chromosome pair, no matter how small, receives at least one crossover

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call