Abstract
We explore the properties of the low-temperature phase of the O(n) loop model in two dimensions by means of transfer-matrix calculations and finite-size scaling. We determine the stability of this phase with respect to several kinds of perturbations, including cubic anisotropy, attraction between loop segments, double bonds, and crossing bonds. In line with Coulomb gas predictions, cubic anisotropy and crossing bonds are found to be relevant and introduce crossover to different types of behavior. Whereas perturbations in the form of loop-loop attractions and double bonds are irrelevant, sufficiently strong perturbations of these types induce a phase transition of the Ising type, at least in the cases investigated. This Ising transition leaves the underlying universal low-temperature O(n) behavior unaffected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.