Abstract

Crossover phase diagrams in the magnetic field versus temperature (H–T) plane of the nonmagnetic heavy-fermion metamagnets UT2Zn20 (T:Ir, Co) are studied by measuring the magnetic and electronic transport properties. The crossover phase diagrams of UIr2Zn20 and UCo2Zn20 are composed of a low-magnetic-field region (LFR) and a high-magnetic-field region (HFR), which are characterized by magnetic properties and the Hall effect, respectively. The LFR is found to form a closed area in the H–T plane, which is a quite different feature from the conventional uranium heavy-fermion compounds and the first observation in uranium compounds. From the drastic anomaly in the Hall effect at a metamagnetic field of UIr2Zn20, it is found that the metamagnetic behavior in UIr2Zn20 corresponds to a crossover from the heavy-fermion state to the field-induced ferromagnetic or polarized paramagnetic state accompanied by the reconstruction or topology change of Fermi surfaces. In UCo2Zn20, on the other hand, no sign of abrupt ch...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.