Abstract

Due to experimental evidence it is incontestable that crossover is essential for some fitness functions. However, theoretical results without assumptions are difficult. So-called real royal road functions are known where crossover is proved to be essential, i.e., mutation-based algorithms have an exponential expected runtime while the expected runtime of a genetic algorithm is polynomially bounded. However, these functions are artificial and have been designed in such a way that crossover is essential only at the very end (or at other well-specified points) of the optimization process.Here, a more natural fitness function based on a generalized Ising model is presented where crossover is essential throughout the whole optimization process. Mutation-based algorithms such as (μ+λ) EAs with constant population size are proved to have an exponential expected runtime while the expected runtime of a simple genetic algorithm with population size 2 and fitness sharing is polynomially bounded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.