Abstract
Percolation clusters are probably the simplest example for scale--invariant structures which either are governed by isotropic scaling--laws (``self--similarity'') or --- as in the case of directed percolation --- may display anisotropic scaling behavior (``self--affinity''). Taking advantage of the fact that both isotropic and directed bond percolation (with one preferred direction) may be mapped onto corresponding variants of (Reggeon) field theory, we discuss the crossover between self--similar and self--affine scaling. This has been a long--standing and yet unsolved problem because it is accompanied by different upper critical dimensions: $d_c^{\rm I} = 6$ for isotropic, and $d_c^{\rm D} = 5$ for directed percolation, respectively. Using a generalized subtraction scheme we show that this crossover may nevertheless be treated consistently within the framework of renormalization group theory. We identify the corresponding crossover exponent, and calculate effective exponents for different length scales and the pair correlation function to one--loop order. Thus we are able to predict at which characteristic anisotropy scale the crossover should occur. The results are subject to direct tests by both computer simulations and experiment. We emphasize the broad range of applicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.