Abstract

We show a crossover from coherent to incoherent behavior of charge transport in crystalline organic semiconductors by considering the effect of shallow traps within the dynamical disorder model. The mixed quantum-classical system is treated by the Ehrenfest dynamics method complementing with instantaneous decoherence corrections and energy relaxation, which has been shown to properly make the system close to equilibrium. The shallow traps, which are incorporated by a static diagonal disorder, are shown to play a central role in the crossover. Temperature dependence of charge-carrier mobility is shown to be changed from being negative to positive with the strength of shallow traps increasing, which implies that there is a crossover from hopping to band-like transport. A higher electric field helps to recover the charge-carrier band-like transport behavior from the traps-caused hopping transport. In this way, a unified physical picture of the charge transport in crystalline organic semiconductors is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.