Abstract

Unique input–output (UIO) sequences have important applications in conformance testing of finite state machines (FSMs). Previous experimental and theoretical research has shown that evolutionary algorithms (EAs) can compute UIOs efficiently on many FSM instance classes, but fail on others. However, it has been unclear how and to what degree EA parameter settings influence the runtime on the UIO problem. This paper investigates the choice of acceptance criterion in the (1 + 1) EA and the use of crossover in the $$(\mu+1)$$ Steady State Genetic Algorithm. It is rigorously proved that changing these parameters can reduce the runtime from exponential to polynomial for some instance classes of the UIO problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.