Abstract

AbstractWe investigate how the domain depth affects the turbulent behaviour in spatially developing mixing layers by means of large-eddy simulations based on a spectral vanishing viscosity technique. Analyses of spectra of the vertical velocity, of Lumley’s diagrams, of the turbulent kinetic energy and of the vortex stretching show that a two-dimensional behaviour of the turbulence is promoted in spatial mixing layers by constricting the fluid motion in one direction. This finding is in agreement with previous works on turbulent systems constrained by a geometric anisotropy, pioneered by Smith, Chasnov & Waleffe (Phys. Rev. Lett., vol. 77, 1996, pp. 2467–2470). We observe that the growth of the momentum thickness along the streamwise direction is damped in a confined domain. An almost fully two-dimensional turbulent behaviour is observed when the momentum thickness is of the same order of magnitude as the confining scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.