Abstract

This paper proposes a new grammar-guided genetic programming (GGGP) system by introducing two original genetic operators: crossover and mutation, which most influence the evolution process. The first, the so-called grammar-based crossover operator, strikes a good balance between search space exploration and exploitation capabilities and, therefore, enhances GGGP system performance. And the second is a grammar-based mutation operator, based on the crossover, which has been designed to generate individuals that match the syntactical constraints of the context-free grammar that defines the programs to be handled. The use of these operators together in the same GGGP system assures a higher convergence speed and less likelihood of getting trapped in local optima than other related approaches. These features are shown throughout the comparison of the results achieved by the proposed system with other important crossover and mutation methods in two experiments: a laboratory problem and the real-world task of breast cancer prognosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.