Abstract

Bumblebees Bombus terrestris are good at learning to distinguish between patterned flowers. They can differentiate between flowers that differ only in their patterning of scent, surface texture, temperature, or electrostatic charge, in addition to visual patterns. As recently shown, bumblebees trained to discriminate between nonvisual scent patterns can transfer this learning to visually patterned flowers that show similar spatial patterning to the learnt scent patterns. Bumblebees can, therefore, transfer learnt patterns between different sensory modalities, without needing to relearn them. We used differential conditioning techniques to explore whether cross-modal transfer of learnt patterns also occurred between visual and temperature patterns. Bumblebees that successfully learnt to distinguish rewarding and unrewarding temperature patterns did not show any preferences for the corresponding unlearnt visual pattern. Similarly, bumblebees that learnt visual patterns did not transfer these to temperature patterns, suggesting that they are unable to transfer learning of temperature and visual patterns. We discuss how cross-modality pattern learning may be limited to modalities that have potentially strong neurological links, such as the previously demonstrated transfer between scent and visual patterns.

Highlights

  • Many floral displays show structured or patterned signals that can be learned by pollinators, and these patterns can show differences in the intensity, composition, and location of their components across the flower (Hempel de Ibarra et al 2015)

  • Bumblebees conditioned to temperature patterns did not show any cross-modality pattern learning when presented with matching visual patterns or control equivalents in the cross-modality learning test (ANOVA, F2,33 = 0.75, p = 0.482, Fig. 2)

  • These findings suggest that temperature pattern learning does not inform recognition and learning of matching visual patterns

Read more

Summary

Introduction

Many floral displays show structured or patterned signals that can be learned by pollinators, and these patterns can show differences in the intensity, composition, and location of their components across the flower (Hempel de Ibarra et al 2015). Nonvisual patterns are common, and include scent patterns (where different amounts of floral volatiles or different floral volatile chemicals are released across the flower; Bergström et al 1995; Balao et al 2011; Lawson et al 2018), electrostatic patterns (where properties of the flower allow charge to accumulate differentially across the flower surface and between flowers: Clarke et al 2013), texture patterns (where shape of cells on the flower surface differ: Kevan and Lane 1985), and temperature patterns (where different parts of the flower differ in how they heat up: Harrap et al 2017) All these pattern types have been demonstrated to differ between flower species and can be used by pollinators for learning flower identity

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.