Abstract

Due to the complementary benefits of visible (RGB) and thermal infrared (T) data, RGB-T object tracking attracts more and more attention recently for boosting the performance under adverse illumination conditions. Existing RGB-T tracking methods usually localize a target object with a bounding box, in which the trackers or detectors is often affected by the inclusion of background clutter. To address this problem, this paper presents a novel approach to suppress background effects for RGB-T tracking. Our approach relies on a novel cross-modal manifold ranking algorithm. First, we integrate the soft cross-modality consistency into the ranking model which allows the sparse inconsistency to account for the different properties between these two modalities. Second, we propose an optimal query learning method to handle label noises of queries. In particular, we introduce an intermediate variable to represent the optimal labels, and formulate it as a \(l_1\)-optimization based sparse learning problem. Moreover, we propose a single unified optimization algorithm to solve the proposed model with stable and efficient convergence behavior. Finally, the ranking results are incorporated into the patch-based object features to address the background effects, and the structured SVM is then adopted to perform RGB-T tracking. Extensive experiments suggest that the proposed approach performs well against the state-of-the-art methods on large-scale benchmark datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.