Abstract

The task of image-text matching refers to measuring the visual-semantic similarity between an image and a sentence. Recently, the fine-grained matching methods that explore the local alignment between the image regions and the sentence words have shown advance in inferring the image-text correspondence by aggregating pairwise region-word similarity. However, the local alignment is hard to achieve as some important image regions may be inaccurately detected or even missing. Meanwhile, some words with high-level semantics cannot be strictly corresponding to a single-image region. To tackle these problems, we address the importance of exploiting the global semantic consistence between image regions and sentence words as complementary for the local alignment. In this article, we propose a novel hybrid matching approach named Cross-modal Attention with Semantic Consistency (CASC) for image-text matching. The proposed CASC is a joint framework that performs cross-modal attention for local alignment and multilabel prediction for global semantic consistence. It directly extracts semantic labels from available sentence corpus without additional labor cost, which further provides a global similarity constraint for the aggregated region-word similarity obtained by the local alignment. Extensive experiments on Flickr30k and Microsoft COCO (MSCOCO) data sets demonstrate the effectiveness of the proposed CASC on preserving global semantic consistence along with the local alignment and further show its superior image-text matching performance compared with more than 15 state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.