Abstract
Diagenesis was studied in DNA obtained from Siberian permafrost (permanently frozen soil) ranging from 10,000 to 400,000 years in age. Despite optimal preservation conditions, we found the sedimentary DNA to be severely modified by interstrand crosslinks; single- and double-stranded breaks; and freely exposed sugar, phosphate, and hydroxyl groups. Intriguingly, interstrand crosslinks were found to accumulate approximately 100 times faster than single-stranded breaks, suggesting that crosslinking rather than depurination is the primary limiting factor for ancient DNA amplification under frozen conditions. The results question the reliability of the commonly used models relying on depurination kinetics for predicting the long-term survival of DNA under permafrost conditions and suggest that new strategies for repair of ancient DNA must be considered if the yield of amplifiable DNA from permafrost sediments is to be significantly increased. Using the obtained rate constant for interstrand crosslinks the maximal survival time of amplifiable 120-bp fragments of bacterial 16S ribosomal DNA was estimated to be approximately 400,000 years. Additionally, a clear relationship was found between DNA damage and sample age, contradicting previously raised concerns about the possible leaching of free DNA molecules between permafrost layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.