Abstract

Few studies have been conducted on the relationship between the crosslinking ability of dialdehyde polysaccharides (DPs) with different structures and the structure and properties of hydrogels. Herein, the effects of dialdehyde sodium alginate (DSA), dialdehyde guar gum (DGG), and dialdehyde dextran (DDE) as crosslinking agents for gelatin (GE)-based hydrogels were comparatively studied. First, the structure and aldehyde content of DPs were evaluated. Subsequently, the structure, crosslinking degree, and physicochemical properties of GE/DP hydrogels were characterized. Compared with pure GE hydrogels, GE/DP hydrogels had higher thermal stability and mechanical properties. Moreover, the aldehyde content of DPs was ordered as follows: DSA < DGG < DDE. The higher crosslinking degree of the hydrogels formed by DPs with a higher aldehyde content resulted in smaller hydrogel pores, higher mechanical strength, and a lower equilibrium swelling rate. These observations provide a theoretical basis for selecting crosslinking candidates for hydrogel-specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.