Abstract

Alkali- and alkali-earth-metal salts of dicyclopentadiene dicarboxylic acid (DCPDCA) were prepared and employed as crosslinkers for chlorine-containing polymers such as polychloromethylstyrene (PCMS), chlorinated polypropylene (CPP), polyepichlorohydrin (PECH), and poly(vinyl chloride) (PVC). Thermally reversible covalent crosslinks (i.e., DCPD bridges) between polymer chains were generated through esterification between the chlorine–carbon bonds of the polymer and the carboxylic salt groups of the crosslinker. The crosslinking reactivity decreased in the following sequence: K > Na > LiDCPDCA > alkali-earth-metal salts of DCPDCA. In addition, PCMS and CPP had higher gelation rates than PECH and PVC. Good flowability at about 195 °C and solubility in maleimide-containing dichlorobenzene on heating indicated that the crosslinked PCMS and CPP exhibited thermally reversible crosslinking because of dimer/monomer (cyclopentadiene) conversion of DCPD moieties via reversible Diels–Alder cycloaddition. Samples of PECH and PVC crosslinked by the alkali salts of DCPDCA were insoluble even when heated in maleimide-containing dichlorobenzene. However, these crosslinked polymers could be dissolved partially after the same treatment when the crosslinker was an alkali-earth-metal salt of DCPDCA. Thermal degradation such as dehydrochlorination of the PECH and PVC might have been responsible for uncontrolled crosslinking because these two polymers are known to be thermally unstable. The unreacted COOK, COONa, or COOLi of the crosslinkers might have initiated base-induced dehydrochlorination when PECH and PVC were heated at high temperatures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 818–825, 2000

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.