Abstract

Chemokines and their receptors are orchestrators of cell migration in humans. Because dysregulation of the receptor-chemokine system leads to inflammation and cancer, both chemokines and receptors are highly sought therapeutic targets. Yet one of the barriers for their therapeutic targeting is the limited understanding of the structural principles behind receptor-chemokine recognition and selectivity. The existing structures do not include CXC subfamily complexes and lack information about the receptor distal N-termini, despite the importance of the latter in signaling, regulation, and bias. Here, we report the discovery of the geometry of the complex between full-length CXCR4, a prototypical CXC receptor and driver of cancer metastasis, and its endogenous ligand CXCL12. By comprehensive disulfide cross-linking, we establish the existence and the structure of a novel interface between the CXCR4 distal N-terminus and CXCL12 β1-strand, while also recapitulating earlier findings from nuclear magnetic resonance, modeling and crystallography of homologous receptors. A cross-linking-informed high-resolution model of the CXCR4-CXCL12 complex pinpoints the interaction determinants and reveals the occupancy of the receptor major subpocket by the CXCL12 proximal N terminus. This newly found positioning of the chemokine proximal N-terminus provides a structural explanation of CXC receptor-chemokine selectivity against other subfamilies. Our findings challenge the traditional two-site understanding of receptor-chemokine recognition, suggest the possibility of new affinity and signaling determinants, and fill a critical void on the structural map of an important class of therapeutic targets. These results will aid the rational design of selective chemokine-receptor targeting small molecules and biologics with novel pharmacology.

Highlights

  • As orchestrators of cell migration, chemokines and their receptors are critical to many physiological and disease-related processes, including embryogenesis and organ development, immune surveillance, inflammation, and cancer metastasis [1]

  • Disulfide crosslinking [6,35], our chosen approach to reveal the geometry of the CXCR4-CXCL12 complex, involves co-expression of pairs of receptor and chemokine Cys mutants in Spodoptera frugiperda (Sf9) insect cells and monitoring the formation of covalent complexes (S1 Fig)

  • Using a bioluminescence resonance energy transfer (BRET)-based β-arrestin-2 recruitment assay in human embryonic kidney 293T (HEK293T) cells, we found that wild-type (WT) CXCL12 displayed reduced potency and efficacy with the charge-reversal CXCR4 mutant E26R, relative to wild type https (WT) CXCR4

Read more

Summary

Introduction

As orchestrators of cell migration, chemokines and their receptors are critical to many physiological and disease-related processes, including embryogenesis and organ development, immune surveillance, inflammation, and cancer metastasis [1]. Geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity complex presented here, are within the paper and its Supporting Information files

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call