Abstract

We propose a synthesis method for hollow copolymer nanoparticles, in which the size is controllable by the wettability of the materials designed by relative energy difference (RED). We investigated the influence of cross-linkers in RED and the hollow polymer nanoparticle synthesis. The size of the nanoparticles was characterized by scanning electron microscopy and transmission electron microscopy images. The diameter size of the hollow copolymer (styrene-co-methyl methacrylate) changes from 400 to 141 nm and the average core-vacancy sizes changes from 330 to 71 nm as increasing the feed ratio of the cross-linker, divinyl benzene, from 0.07 to 0.43. Cross-linkers in polymerization precipitates a polymerization reaction to produce seed copolymer particles quickly. The seed copolymer is a more transferrable medium through the surfactants across emulsion droplets and inhibits emulsion growth by unstable concentration variations of seed copolymers in emulsions. Therefore, Ostwald ripening was reduced by a higher feeding ratio of the cross-linker in the copolymer, which tends to produce smaller sized hollow nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.