Abstract
Self-assembling peptides (SAPs) are synthetic bioinspired biomaterials that can be feasibly multi-functionalized for cell transplantation and/or drug delivery therapies. Despite their superior biocompatibility and ease of scaling-up for production, they are unfortunately hampered by weak mechanical properties due to transient non-covalent interactions among and within the self-assembled peptide chains, thus limiting their potential applications as fillers, hemostat solutions, and fragile scaffolds for soft tissues. Here, we have developed and characterized a cross-linking strategy that increases both the stiffness and the tailorability of SAP hydrogels, enabling the preparation of transparent flexible threads, discs, channels, and hemispherical constructs. Empirical and computational results, in close agreement with each other, confirmed that the cross-linking reaction does not affect the previously self-assembled secondary structures. In vitro tests also provided a first hint of satisfactory biocompatibility by favoring viability and differentiation of human neural stem cells. This work could bring self-assembling peptide technology to many applications that have been precluded so far, especially in regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.