Abstract

Crosslinked polyethylenimines (PEIs) have been frequently examined over the past decade since they can maintain the transfection efficiency of commercially available, 25k branched PEI, but exhibit less cytotoxicity. The argument is often made that the degradability of such polymers, generally synthesized with either disulfide or hydrolytically degradable crosslinkers, is critical to the high efficiency and low toxicity of the system. In this work, we present a crosslinked linear PEI (xLPEI) system in which either disulfide-responsive or non-degradable linkages are incorporated. As with previous systems, strong transfection efficiency in comparison with commercial standards was achieved with low cytotoxicity. However, these properties were shown to be present when either the degradable or non-degradable crosslinker was used. Uncomplexed polymer was demonstrated to be the critical factor determining transfection efficiency for these polymers, mediating efficient endosomal escape without signs of cell membrane damage. While several crosslinked PEI systems in the literature have demonstrated the effect of the disulfide moiety, this work demonstrates that disulfide-mediated unpackaging may not be as important as conventionally thought for some PEI systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.