Abstract

ABSTRACTCrosslinked poly(ester urethane)s and their acrylate derivatives based on trifunctional polycaprolactone and trifunctional aliphatic isocyanates were synthesized. Biodegradable scaffolds with uniform, controlled micron‐scale porosity were fabricated with these materials. Mechanical and swelling properties of monolithic and microporous materials were studied. Cytotoxicity, hydrolytic, and enzymatic degradation and their effects on mechanical properties of the biodegradable scaffolds were investigated. The polymer degradation products were found not to be cytotoxic at moderate concentrations and to permit cell attachment and spreading. Degradation rates and mechanical properties could be tuned to desired performance criteria for a given application by adjusting crosslink density and the ratio of hard segment to soft segment. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48943.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.