Abstract

Abstract1‐Bis[4‐[N,N‐di(4‐tolyl)amino]phenyl]‐cyclohexane (TAPC) has been widely used in xerography and organic light‐emitting diodes (OLEDs), but derivatives are little known. Here, a new series of solution‐processable, crosslinkable hole conductors based on TAPC with varying highest occupied molecular orbital (HOMO) energies from −5.23 eV to −5.69 eV is implemented in blue phosphorescent OLEDs. Their superior perfomance compared with the well‐known N4,N4,N4′,N4′‐tetraphenylbiphenyl‐4,4′‐diamine (TPDs) analogues regarding hole‐injection and mobility, electron and exciton blocking capabilities, efficiency, and efficiency roll‐off is demonstrated. Overall, the TAPC‐based devices feature higher luminous and power efficiency over a broader range of brightness levels and reduced efficiency roll off. A systematic broadening of the emission zone is observed as the hole‐injection barrier between the anode and the hole‐transporting layer increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call