Abstract
In this paper, we address the rate control problem in a multi-hop random access wireless network, with the objective of achieving proportional fairness amongst the end-to-end sessions. The problem is considered in the framework of nonlinear optimization. Compared to its counterpart in a wired network where link capacities are assumed to be fixed, rate control in a multi-hop random access network is much more complex and requires joint optimization at both the transport layer and the link layer. This is due to the fact that the attainable throughput on each link in the network is `elastic' and is typically a non-convex and non-separable function of the transmission attempt rates. Two cross-layer algorithms, a dual based algorithm and a primal based algorithm, are proposed in this paper to solve the rate control problem in a multi-hop random access network. Both algorithms can be implemented in a distributed manner, and work at the link layer to adjust link attempt probabilities and at the transport layer to adjust session rates. We prove rigorously that the two proposed algorithms converge to the globally optimal solutions. Simulation results are provided to support our conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.