Abstract

3D video for tele-medicine applications is gradually gaining momentum since the 3D technology can provide precise location information. However, the weak link for 3D video streaming is the necessary wireless link of the communication system. Neglecting the wireless impairments can severely degrade the performance of 3D video streaming that communicates complex critical medical data. In this paper, we propose systematic methodology for ensuring high performance of the 3D medical video streaming system. First, we present a recursive end-to-end distortion estimation approach for MVC (multiview video coding)-based 3D video streaming over error-prone networks by considering the 3D inter-view prediction. Then, based on the previous model, we develop a cross-layer optimization scheme that considers the LTE wireless physical layer (PHY). In this optimization, the authentication requirements of 3D medical video are also taken into account. The proposed cross-layer optimization approach jointly controls and manages the authentication, video coding quantization of 3D video, and the modulation and channel coding scheme (MCS) of the LTE wireless PHY to minimize the end-to-end video distortion. Experimental results show that the proposed approach can provide superior 3D medical video streaming performance in terms of peak signal-to-noise ratio (PSNR) when compared to state-of-the-art approaches that include joint source-channel optimized streaming with multi-path hash-chaining based-authentication, and also conventional video streaming with single path hash-chaining-based authentication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.