Abstract
A minimal interrupted communication link setup is the primary objective of the MAC layer. The MAC layer is responsible for accessing the communication channel. At MAC, a control channel is used in the selection of collision free paths for data transfer. Therefore, the design of the control channel plays a pivotal role in achieving desired QoS in cognitive radio (CR) technology. Various schemes of control channel design help the CR network (CRN) to obtain better performance. The reported work focuses on a hybrid MAC protocol. The novelty of the scheme lies in the process of hybridization. A cross-layer framework is proposed for hybridization. The cross-layering has been done between network and MAC layer to achieve hybridization between different control channel design approaches. The broad categorization of control channel designs is between licensed in-band and dedicated unlicensed out-band approaches. In the in-band control channel design approach, the opportunistic use of data channel as control channel fulfills the decorum of CR technology. As soon as the primary user activity rises in the data channels, the in-band approach suffers from poor performance. On the other hand, the dedicated unlicensed out-band control channel design approach provides global coverage and all-time availability but suffers from channel saturation and intruder attacks. Interference in the control channel limits the use of out-band design. This motivates authors to develop a hybrid MAC protocol that can float between licensed in-band design and unlicensed out-band design to access the control channel. The hybridization is possible by sharing a primary user free channel list (PCL) among CR nodes. In conventional hybrid MAC protocols, the PCL is shared as a control beacon in the channel. Extra packet requirement as control beacon affects the performance of CR scenario. The proposed cross-layer design based hybrid MAC protocol avoids the need of an extra control beacon for PCL transmission. Further, the hybridization helps in achieving advantages of both in-band and out-band control channel design approaches. The simulation results show that the proposed hybrid MAC protocol performs satisfactorily in terms of packet delivery ratio, average throughput, average delay and control overhead. The performances are also tested in the worst scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.