Abstract

Adaptively adjusting transmit rate and power concurrently to enhance goodput and save energy is a challenging issue in a wireless local area network (WLAN) because goodput enhancement and energy saving are usually two contradictory goals. In this paper, we propose channel-driven rate and power adaptation (CDRPA) schemes and develop a physical (PHY)/medium access control (MAC) cross-layer analytical method incorporating the impacts of Nakagami fading channel and the carrier sense multiple access (CSMA) MAC protocol. The CDRPA scheme has much lower computation complexity than the energy-optimal complete-search scheme. In a multiuser contention scenario, we analyze the energy efficiency and the goodput of the power-first and rate-first CDRPA schemes as well as the energy-optimal complete-search adaptation scheme. At the cost of lower goodput, the power-first scheme has better energy efficiency than the rate-first CDRPA scheme, whereas if the goodput is the main concern, the rate-first CDRPA scheme shall be chosen due to better goodput performance. More interestingly, we find that the power-first CDRPA scheme can achieve about the same goodput and energy efficiency as the energy-optimal complete-search link adaptation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.