Abstract

Chen, Deng, Du, Stanley, and Yan introduced the notion of $k$-crossings and $k$-nestings for set partitions, and proved that the sizes of the largest $k$-crossings and $k$-nestings in the partitions of an $n$-set possess a symmetric joint distribution. This work considers a generalization of these results to set partitions whose arcs are labeled by an $r$-element set (which we call $r$-colored set partitions). In this context, a $k$-crossing or $k$-nesting is a sequence of arcs, all with the same color, which form a $k$-crossing or $k$-nesting in the usual sense. After showing that the sizes of the largest crossings and nestings in colored set partitions likewise have a symmetric joint distribution, we consider several related enumeration problems. We prove that $r$-colored set partitions with no crossing arcs of the same color are in bijection with certain paths in $\mathbb{N}^r$, generalizing the correspondence between noncrossing (uncolored) set partitions and 2-Motzkin paths. Combining this with recent work of Bousquet-Mélou and Mishna affords a proof that the sequence counting noncrossing 2-colored set partitions is P-recursive. We also discuss how our methods extend to several variations of colored set partitions with analogous notions of crossings and nestings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call