Abstract

This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds. We introduce a new approach and use it to prove a Ω(log1.5 n) lower bound on the operational time of a wide range of boolean data structure problems, most notably, on the query time of dynamic range counting over F2. Proving an ω(lgn) lower bound for this problem was explicitly posed as one of five important open problems in the late Mihai Pǎtrascu’s obituary . This result also implies the first ω(lgn) lower bound for the classical 2D range counting problem, one of the most fundamental data structure problems in computational geometry and spatial databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and 2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median. Our technical centerpiece is a new way of “weakly” simulating dynamic data structures using efficient one-way communication protocols with small advantage over random guessing. This simulation involves a surprising excursion to low-degree (Chebyshev) polynomials which may be of independent interest, and offers an entirely new algorithmic angle on the “cell sampling” method of Panigrahy et al. .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.