Abstract

Given an embedded planar acyclic digraph G, we define the problem of acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM) to be the problem of determining a hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to a hamiltonian acyclic digraph. Our results include: 1. We provide a characterization under which a planar st-digraph G is hamiltonian. 2. For an outerplanar st-digraph G, we define the st-polygon decomposition of G and, based on its properties, we develop a linear-time algorithm that solves the Acyclic-HPCCM problem. 3. For the class of planar st-digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. We infer (based on this equivalence) for the class of outerplanar st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings. To the best of our knowledge, it is the first time that edge-crossing minimization is studied in conjunction with the acyclic hamiltonian completion problem and the first time that an optimal algorithm with respect to spine crossing minimization is presented for upward topological book embeddings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.