Abstract

Singularities in the dark energy late universe are discussed, under the assumption that the Lagrangian contains the Einstein term R plus a modified gravity term of the form R^\alpha, where \alpha is a constant. It is found, similarly as in the case of pure Einstein gravity [I. Brevik and O. Gorbunova, Gen. Rel. Grav. 37 (2005), 2039], that the fluid can pass from the quintessence region (w>-1) into the phantom region (w<-1) as a consequence of a bulk viscosity varying with time. It becomes necessary now, however, to allow for a two-fluid model, since the viscosities for the two components vary differently with time. No scalar fields are needed for the description of the passage through the phantom barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call