Abstract

Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.