Abstract
A crisis is a global bifurcation in which a chaotic attractor has a discontinuous change in size or suddenly disappears as a scalar parameter of the system is varied. In this Letter, we describe a global bifurcation in three dimensions which can result in a crisis. This bifurcation does not involve a tangency and cannot occur in maps of dimension smaller than 3. We present evidence of unstable dimension variability as a result of the crisis. We then derive a new scaling law describing the density of the new portion of the attractor formed in the crisis. We illustrate this new type of bifurcation with a specific example of a three-dimensional chaotic attractor undergoing a crisis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.