Abstract

Abstract. We report on the in situ identification of a narrow electrostatic acceleration layer (electrostatic shock) containing intense plasma turbulence in the upward current region, and its effect on auroral particles. Wave turbulence recorded in the center of the layer differs in character from that recorded above and beneath. It is concluded that the shock is sustained by different nonlinear waves which, at each level, act on the particles in such a way to produce a net upward directed electric field. The main power is in the ion acoustic range. We point out that anomalous resistivities are incapable of locally generating the observed parallel potential drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.