Abstract

The existence of phase-separated states is an essential feature of infinite-volume systems with a thermal, first-order phase transition. At energies between those at which the phase transition takes place, equilibrium homogeneous states are either metastable or suffer from a spinodal instability. In this range the stable states are inhomogeneous, phase-separated states. We use holography to investigate how this picture is modified at finite volume in a strongly coupled, four-dimensional gauge theory. We work in the planar limit, N → ∞, which ensures that we remain in the thermodynamic limit. We uncover a rich set of inhomogeneous states dual to lumpy black branes on the gravity side, as well as first- and second-order phase transitions between them. We establish their local (in)stability properties and show that fully non-linear time evolution in the bulk takes unstable states to stable ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.