Abstract
The crossflow instability in a hypersonic, laminar boundary layer is investigated using point measurements inside the boundary layer for the first time. Experiments are performed on a 7° right, circular cone with an adiabatic wall condition at 5.6° angle of incidence in the low-disturbance Mach 6 Quiet Tunnel at Texas A&M University. Measurements are made with a constant-temperature hot-wire anemometer system with a frequency response up to 180 kHz. Stationary crossflow waves are observed to grow and saturate. A travelling wave coexists with the stationary wave and occurs in a frequency band centred around 35 kHz. A type-I secondary instability is also observed in a frequency band centred around 110 kHz. The behaviour of all three modes is largely consistent with their low-speed counterparts prior to saturation of the stationary wave. Afterward, the behaviour remains in partial agreement with the low-speed case. Neither type-II secondary instability nor transition to turbulence are observed in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.