Abstract

AbstractThe removal of Fe(III), Cu(II), and Cd(II) ions from aqueous solutions was investigated with a crossflow filtration technique. Alginic acid (AA)/cellulose composite membranes were used for retention. In the filtration of Fe(III) solutions, the effects of the crossflow velocity, applied pressure, AA content of the membranes, and pH on the retention percentage and the permeate flux were examined. The maximum retention percentage was found to be 89% for a 1 × 10−4M Fe(III) solution at the flow velocity of 100 mL/min and the pressure of 60 kPa with 0.50% (w/v) AA/cellulose composite membranes at pH 3. Aqueous solutions of Cu(II) and Cd(II) were filtered at the flow velocity of 100 mL/min and pressure of 10 kPa. The effects of the AA content of the membranes and pH of the waste medium on the retention percentage and the permeate flux were determined. For 1 × 10−4M Cu(II) and Cd(II) solutions, the maximum retention percentages were found to be 94 and 75%, respectively, at pH 7 with 0.50% (w/v) AA/cellulose composite membranes. When metal‐ion mixtures were used, the retention percentages of Fe(III), Cu(II), and Cd(II) were found to be 89, 48, and 10%, respectively, at pH 3 with 0.50% (w/v) AA/cellulose composite membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.