Abstract

Let (G,Σ) be a (partially) ordered abelian group with Haar measure μ, let (A,G,α) be a dynamical system and let A⋊αΣ be the associated semicrossed product. Using Takai duality we establish a stable isomorphismA⋊αΣ∼s(A⊗K(G,Σ,μ))⋊α⊗AdρG, where K(G,Σ,μ) denotes the compact operators in the CSL algebra AlgL(G,Σ,μ) and ρ denotes the right regular representation of G. We also show that there exists a complete lattice isomorphism between the αˆ-invariant ideals of A⋊αΣ and the (α⊗Adρ)-invariant ideals of A⊗K(G,Σ,μ).Using Takai duality we also continue our study of the Radical for the crossed product of an operator algebra and we solve open problems stemming from the earlier work of the authors. Among others we show that the crossed product of a radical operator algebra by a compact abelian group is a radical operator algebra. We also show that the permanence of semisimplicity fails for crossed products by R. A final section of the paper is devoted to the study of radically tight dynamical systems, i.e., dynamical systems (A,G,α) for which the identity Rad(A⋊αG)=(RadA)⋊αG persists. A broad class of such dynamical systems is identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.