Abstract
Let X be an infinite compact metric space with finite covering dimension and let h : X → X be a minimal homeomorphism. We show that the associated crossed product C*-algebra A = C*(ℤ, X, h) has tracial rank zero whenever the image of K0(A) in Aff(T(A)) is dense. As a consequence, we show that these crossed product C*-algebras are in fact simple AH algebras with real rank zero. When X is connected and h is further assumed to be uniquely ergodic, then the above happens if and only if the rotation number associated to h has irrational values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.