Abstract
We construct the crossed product [Formula: see text] of a C(X)-algebra [Formula: see text] by an endomorphism ρ, in such a way that ρ becomes induced by the bimodule [Formula: see text] of continuous sections of a vector bundle ℰ → X. Some motivating examples for such a construction are given. Furthermore, we study the C*-algebra of G-invariant elements of the Cuntz-Pimsner algebra [Formula: see text] associated with [Formula: see text], where G is a (noncompact, in general) group acting on ℰ. In particular, the C*-algebra of invariant elements with respect to the action of the group of special unitaries of ℰ is a crossed product in the above sense. We also study the analogous construction on certain Hilbert bimodules, called "noncommutative pullbacks".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.