Abstract

This paper links the third symmetric cohomology (introduced by Staic and Zarelua ) to crossed modules with certain properties. The equivalent result in the language of 2-groups states that an extension of 2-groups corresponds to an element of $HS^3$ iff it possesses a section which preserves inverses in the 2-categorical sense. This ties in with Staic's (and Zarelua's) result regarding $HS^2$ and abelian extensions of groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.