Abstract

The atom-radical reaction of ground state carbon atoms (C((3)P)) with the vinyl radical (C(2)H(3)(X(2)A')) was conducted under single collision conditions at a collision energy of 32.3 ± 2.9 kJ mol(-1). The reaction dynamics were found to involve a complex forming reaction mechanism, which is initiated by the barrier-less addition of atomic carbon to the carbon-carbon-double bond of the vinyl radical forming a cyclic C(3)H(3) radical intermediate. The latter has a lifetime of at least 1.5 times its rotational period and decomposes via a tight exit transition state located about 45 kJ mol(-1) above the separated products through atomic hydrogen loss to the cyclopropenylidene isomer (c-C(3)H(2)) as detected toward cold molecular clouds and in star forming regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call