Abstract
A pulsed beam of Co+(3F4) crosses a pulsed beam of C3H8 or C3D8 gas under single collision conditions at collision energies of 0.01 eV and 0.21 eV. After a variable time delay t(ext) = 1-8 micros a fast high voltage pulse extracts product ions into a field-free flight tube for mass analysis. Consistent with earlier work, we observe prompt CoC3H6+ +H2 elimination products in 3:1 excess over CoC2H4+ +CH4 products at 0.21 eV on a 2-10 micros time scale. Long-lived CoC3H8+ complexes fragment predominantly back to Co+ +C3H8 reactants and to H2 elimination products on a 6-24 micros time scale. Density functional theory (B3LYP) calculations provide energies, geometries, and harmonic vibrational frequencies at key stationary points for use in a statistical rate model of the reaction. By adjusting two key multicenter transition state (MCTS) energies downward by 4-7 kcal mol(-1), we obtain good agreement with our decay time results and with the cross section versus collision energy of Armentrout and co-workers from 0.1-1.0 eV. B3LYP theory succeeds in finding relative energies of the MCTSs leading to CH4 and H2 in the proper order to explain the different product branching ratio for Co+ (which favors H2 over CH4) compared with its nearest neighbors Fe+ and Ni+ (which favor CH4 over H2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.